If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-y^2+3y+13=0
We add all the numbers together, and all the variables
-1y^2+3y+13=0
a = -1; b = 3; c = +13;
Δ = b2-4ac
Δ = 32-4·(-1)·13
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{61}}{2*-1}=\frac{-3-\sqrt{61}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{61}}{2*-1}=\frac{-3+\sqrt{61}}{-2} $
| w÷-4=0.9 | | 144=-4(-8x+-4 | | -2(p-5)=40 | | 3x+7/3=1/6 | | 6x-4x-3=20-9 | | –9h−2=–7−10h | | -37+7x=12x+63 | | 12x-3(x-6)=63 | | 1/11y-3=-13 | | 8x+12=3x+5 | | 3x^2=333 | | 5x+25=10/x | | 8x+6=3x-22 | | 13n=100+3n | | 23x=-6-7x^ | | 7x/6-3x/6=230 | | 7y-5=10 | | 1÷4a-12=5÷4a+6 | | -6-3w=-11w-19-3 | | j+8=-17 | | 16=-4(r+3)+8(8-r) | | 2(4x+4)=-20x-12(x-2) | | -2(8m+16)=-16 | | -37+7+x=12x63 | | n.5n+34=-2(1-7n) | | 3y²=—4y+16 | | 2x-19=6x-43 | | 8(b+1)-2(5b+3)=-8 | | 2(m+3)=(m-1) | | 4x-12=-6x+48 | | 6x+2=5x+-2 | | 4(x+6)=3(2x+10) |